Smart liposomal drug delivery for treatment of oxidative stress model in human embryonic stem cell-derived retinal pigment epithelial cells


    loading  Checking for direct PDF access through Ovid

Abstract

Oxidative stress has been implicated in the progression of age-related macular degeneration (AMD). Treatment with antioxidants seems to delay progression of AMD. In this study, we suggested an antioxidant delivery system based on redox-sensitive liposome composed of phospholipids and a diselenide centered alkyl chain. Dynamic light scattering assessment indicated that the liposomes had an average size of 140nm with a polydispersity index below 0.2. The percentage of encapsulation efficiency of the liposomes was calculated by high-performance liquid chromatography. The carriers were loaded with N-acetyl cysteine as a model antioxidant drug. We demonstrated responsiveness of the nanocarrier and its efficiency in drug delivery in an oxidative stress model of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells. The modeled cells treated with diselenide containing liposomes loaded with 10mM NAC, showed a better therapeutic effect with a cell metabolic activity of 90%, which was significantly higher compared to insensitive liposomes or NAC treated groups (P<0.05). In addition, the expression of oxidative-sensitive gene markers in diselenide containing liposomes groups were improved. Our results demonstrated fabricated smart liposomes opens new opportunity for targeted treatment of retinal degeneration.

    loading  Loading Related Articles