Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical andin vitropeculiarities important for dermal application

    loading  Checking for direct PDF access through Ovid


Graphical abstractThe objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3–146.8 nm; PDI < 0.2; pH: 4.73–5.73). Curcumin’s release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/mL) and FRAP (1.19 ± 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.

    loading  Loading Related Articles