Virtual reality by mobile smartphone: improving child pedestrian safety

    loading  Checking for direct PDF access through Ovid


BackgroundPedestrian injuries are a leading cause of paediatric injury. Effective, practical and cost-efficient behavioural interventions to teach young children street crossing skills are needed. They must be empirically supported and theoretically based. Virtual reality (VR) offers promise to fill this need and teach child pedestrian safety skills for several reasons, including: (A) repeated unsupervised practice without risk of injury, (B) automated feedback on crossing success or failure, (C) tailoring to child skill levels: (D) appealing and fun training environment, and (E) most recently given technological advances, potential for broad dissemination using mobile smartphone technology.Objectives and methodsExtending previous work, we will evaluate delivery of an immersive pedestrian VR using mobile smartphones and the Google Cardboard platform, technology enabling standard smartphones to function as immersive VR delivery systems. We will overcome limitations of previous research suggesting children learnt some pedestrian skills after six VR training sessions but did not master adult-level pedestrian skills by implementing a randomised non-inferiority trial with two equal-sized groups of children ages 7–8 years (total N=498). All children will complete baseline, postintervention and 6-month follow-up assessments of pedestrian safety and up to 25 30-min pedestrian safety training trials until they reach adult levels of functioning. Half the children will be randomly assigned to train in Google Cardboard and the other half in a semi-immersive kiosk VR. Analysis of Covariance (ANCOVA) models will assess primary outcomes.DiscussionIf results are as hypothesised, mobile smartphones offer substantial potential to overcome barriers of dissemination and implementation and deliver pedestrian safety training to children worldwide.

    loading  Loading Related Articles