Magnetic Field Dependence of Solvent Proton Relaxation by Solute Dysprosium(III) Complexes

    loading  Checking for direct PDF access through Ovid

Abstract

RATIONALE AND OBJECTIVES.

Many magnetic resonance imaging (MRI) agents are Gd(III)-based; its half-filled f-shell has an S-ground state and hence a long electronic relaxation time, leading to comparably large effects on 1/T1 and 1/T2 of water protons with no shift in the water-proton resonance frequency. 1/T1 and 1/T2 nuclear magnetic relaxation dispersion (NMRD) profiles of the Dy(III) aquo ion and its chelates have been reported recently. Dy(III) ions differ magnetically from Gd(III); the large spin-orbit interaction of its non-S-ground state reduces the electronic relaxation time 100-fold, and can have a large effect on proton 1/T2 and resonance frequency. Relaxation theory is well-developed and applicable to both ions but, for Dy(III), the phenomena are more wide-ranging. Recent interpretations have suggested that the data are anomolous, requiring a new mechanism for their explanation. The authors explain published Dy(III) data in terms of known theory, guided by experience with Gd(III) agents.

METHODS.

For fields below 1 T, the authors incorporate the shortened electronic relaxation time into the usual low-field theory for magnetic dipolar interactions between water protons and Dy(III) magnetic moments. Both inner- and outer-sphere relaxations are included. At higher fields (and unusual for small single-ion agents) one must include dipolar interactions of protons with the magnetization of the Dy(III) moments. This "Curie magnetization" causes a quadratic dependence of 1/T1 on field, and-through dipolar-induced shifts-an even greater quadratic dependence of 1/T2.

RESULTS.

All published data can be explained by magnetic dipolar interactions. For Dy(III), the Curie term has a longer correlation time than the low-field term, namely, the rotation of solute for 1/T1 and the even longer water exchange lifetime τM for 1/T2. This exchange modulates the shift, producing phenomena not seen with Gd(III).

CONCLUSIONS.

Relaxation by Dy(III) chelates can be explained by the same well-established theory of dipolar interactions used for their Gd(III) analogs. Interestingly, for MRI applications, τM should be long for Dy(III)-based agents and short for Gd(III)-based agents.

Related Topics

    loading  Loading Related Articles