Effect of Renal Function on Gadolinium-Related Signal Increases on Unenhanced T1-Weighted Brain Magnetic Resonance Imaging

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives

The purpose of this study was to determine if renal function affects signal changes in the deep brain nuclei on unenhanced T1-weighted images after administration of linear gadolinium-based contrast agents (GBCAs).

Methods

An electronic medical records search of 2 large medical centers identified 25 patients who received linear GBCA while on hemodialysis and had unenhanced T1-weighted images of the brain before and after. The dentate-to-cerebellar peduncle (DCP) ratio, globus pallidus-to-mid thalamus (GPT) ratio, and choroid plexus-to-nearby white matter ratio were measured and compared with 25 age/sex/GBCA exposure–matched control patients with normal or near-normal renal function (estimated glomerular filtration rate >60 mL/min per 1.73 m2). Two additional control groups included 13 patients on hemodialysis without GBCA exposure and 13 age/sex-matched patients with estimated glomerular filtration rate greater than 60 mL/min per 1.73 m2.

Results

Hemodialysis patients (n = 25) with an average of 1.8 linear GBCA administrations had a 4.9% mean increase (1.00 ± 0.04 vs 1.05 ± 0.05; P < 0.001) in DCP, which was greater than the 1.6% change (0.99 ± 0.04 vs 1.00 ± 0.05; P = 0.08) observed in matched controls (P = 0.01). There was no significant signal change in the DCP ratio in the 13 hemodialysis patients (0.99 ± 0.04 vs 0.99 ± 0.04; P = 0.78) and 13 age/sex-matched patients (0.99 ± 0.02 vs 0.99 ± 0.03; P = 0.78) who did not receive GBCA. The hemodialysis patients had a baseline GPT that was higher than nondialysis patients (P < 0.001). However, the GPT change after GBCA administration was not significantly different from controls. Increased signal in the choroid plexus on unenhanced T1-weighted images after GBCA administration was noted in hemodialysis patients (0.72 ± 0.20 vs 0.86 ± 0.23; P = 0.006); however, a multivariate analysis showed this to be primarily related to hemodialysis (P = 0.003) with only a trend toward relating to GBCA exposure (P = 0.07).

Conclusions

Hemodialysis patients receiving linear GBCA have greater dentate nucleus signal increases on unenhanced T1-weighted images, suggesting that renal function may affect the rate of gadolinium accumulation in the brain after linear GBCA-enhanced magnetic resonance imaging.

Related Topics

    loading  Loading Related Articles