Ascochlorin activates p53 in a manner distinct from DNA damaging agents

    loading  Checking for direct PDF access through Ovid


Ascochlorin, a prenylphenol antitumor antibiotic, profoundly increases the expression of endogenous p53 by increasing protein stability in the human osteosarcoma cells and human colon cancer cells. Ascochlorin also increases DNA binding activity to the p53 consensus sequence in nuclear extract and enhances transcription of p53 downstream targets. Ascochlorin specifically induces p53 phosphorylation at ser 392 without affecting ser 15 or 20, whereas DNA damaging agents typically phosphorylate these serines. Moreover, ascochlorin does not induce phosphorylation of ATM and CHK1, an established substrate of ATR that is activated by genotoxins, nor does it increase DNA strand break, as confirmed by comet assay. The structure-activity relationship suggests that p53 activation by ascochlorin is related to inhibition of mitochondrial respiration, which is further supported by the observation that respiratory inhibitors activate p53 in a manner similar to ascochlorin. These results suggest that ascochlorin, through the inhibition of mitochondrial respiration, activates p53 through a mechanism distinct from genotoxins. © 2009 UICC

    loading  Loading Related Articles