Inhibition of mammalian target of rapamycin signaling potentiates the effects of all-transretinoic acid to induce growth arrest and differentiation of human acute myelogenous leukemia cells

    loading  Checking for direct PDF access through Ovid


Our study explored the drug interaction of all-trans retinoic acid (ATRA) and RAD001 (everolimus), the inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in acute myelogenous leukemia (AML) NB4 and HL60 cells. RAD001 (10 nM) significantly enhanced the ATRA-induced growth arrest and differentiation of these cells, as measured by colony-forming assay and cell cycle analysis, and expression of CD11b cell surface antigen and nitroblue tetrazolium reduction, respectively. ATRA (0.1–1 μM) upregulated levels of RTP801, a negative regulator of mTORC1, and inhibited mTORC1 signaling as assessed by measurement of the levels of p-p70S6K and p-4E-BP1 in HL60 and NB4 cells. ATRA (0.1–1 μM) in combination with RAD001 (10 nM) strikingly downregulated the levels of p-70S6K and p-4E-BP1 without affecting the total amount of these proteins. Notably, RAD001 (10 nM) significantly augmented ATRA-induced expression of CCAAT/enhancer-binding protein ε (C/EBPε) and p27kip1and downregulated levels of c-Myc in these cells. Furthermore, RAD001 (5 mg/kg) enhanced the ability of ATRA (10 mg/kg) to inhibit the proliferation of HL60 cells growing as tumor xenografts in immune-deficient nude mice. Taken together, concomitant blockade of the RA and mTORC1 signaling may be a promising treatment strategy for individuals with AML. © 2009 UICC

    loading  Loading Related Articles