Preparation and evaluation of swelling induced-orally disintegrating tablets by microwave irradiation


    loading  Checking for direct PDF access through Ovid

Abstract

A major challenge in the development of orally disintegrating tablets (ODTs) is to achieve a good balance between tablet hardness and disintegration time. In this study, an advanced method was demonstrated to improve these opposing properties in a molded tablet using a one-step procedure that exploits the swelling induced by microwave treatment. Wet molded tablets consisting of the delta form of mannitol and silicon dioxide were prepared and microwave-heated to generate water vapor inside the tablets. This induced either swelling or shrinking of tablets, in the extent of each being dependent on tablet formulation and manufacturing conditions. A two-level full factorial design method was used to evaluate the effects of several variables in formulation and manufacturing conditions on the tablet properties, hardness, disintegration time and change in shape. The variables investigated in this study were: ratio of silicon dioxide in formulation, water volume added in granulation, ratio of water absorbed by silicon dioxide prior to granulation, and microwave irradiation time. Swelling of tablet by microwave irradiation was observed in the batches with high ratio of silicon dioxide and low levels of water volume. The disintegration time was clearly shortened by induction of the swelling, while tablet hardness increased. We demonstrated that the water vapor generated by microwave irradiation promoted a change in the crystalline form of mannitol from delta to beta, and that this may have contributed to an increase in tablet hardness. Additionally, it was found that new solid bridges were formed between the granules in the tablet via the pathway from dissolution of mannitol in water vapor to congelation, resulting in an increase in tablet hardness. Thus, both tablet hardness and disintegration properties of the molded tablets were improved by the proposed one-step method and the appropriate ranges for variables are indicated. In addition, multiple regression modeling was used to optimize formulation and manufacturing conditions, and the tablets obtained under these optimized conditions showed both swelling and desirable tablet properties. Therefore, we concluded that this one-step method using microwave irradiation would be a useful method for preparing the ODTs.

    loading  Loading Related Articles