Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells

    loading  Checking for direct PDF access through Ovid


Many studies have demonstrated the uptake mechanisms of various nanoparticle delivery systems with different physicochemical properties in different cells. In this study, we report for the first time the preparation and characterization of teniposide (VM-26) poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) and their cellular uptake pathways in human glioblastoma U87MG cells. The nanoparticles prepared with oil-in-water (O/W) single-emulsion solvent evaporation method had a small particle size and spherical shape and provided effective protection against degradation of teniposide in PBS solution. Differential scanning calorimeter (DSC) thermograms concluded that VM-26 was dispersed as amorphous or disordered crystalline phase in the PLGA matrix. A cytotoxicity study revealed that, in a 24 h period, blank PLGA NPs had no cytotoxicity, whereas teniposide-loaded PLGA NPs (VM-26-NPs) had U87MG cytotoxicity levels similar to free teniposide. Confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images showed the distribution and degradation processes of nanoparticles in cells. An endocytosis inhibition test indicated that clathrin-mediated endocytosis and macropinocytosis were the primary modes of engulfment involved in the internalization of VM-26-NPs. Our findings suggest that PLGA nanoparticles containing a sustained release formula of teniposide may multiplex the therapeutic effect and ultimately degrade in lysosomal within human glioblastoma U87MG cells.

    loading  Loading Related Articles