SC lipid model membranes designed for studying impact of ceramide species on drug diffusion and permeation, Part III: Influence of penetration enhancer on diffusion and permeation of model drugs


    loading  Checking for direct PDF access through Ovid

Abstract

The impact of the lipophilic penetration enhancer, oleic acid (OA), on the barrier properties of stratum corneum (SC) lipid model membranes was investigated based on diffusion and permeation studies of model drugs covering a broad range of lipophilicities. Diffusion and permeation experiments of urea, caffeine and diclofenac sodium were conducted using Franz-type diffusion cells. HPLC and capillary electrophoresis techniques were employed to analyze the amount of permeated drug. An incorporation of OA to the SC lipid model membranes did not change the relation between the diffusion and permeation behavior of model drugs presented previously for SC lipid model membranes without OA. The fastest rate of diffusion through SC lipid model membranes occurred in the case of the most hydrophilic drug, urea. In the case of permeation studies of caffeine and diclofenac sodium across SC lipid model systems, the permeability parameters were either equal or slightly larger in favor of the most lipophilic drug, diclofenac sodium.OA had a pronounced impact on the barrier properties of SC lipid model membranes. It caused the impairment of the barrier function of the SC lipid model membrane with Cer [AP] (phytosphingosine-based ceramide), however, surprisingly improved the barrier properties of the SC lipid model system with Cer [EOS] (sphingosine-based acylceramide).

    loading  Loading Related Articles