Time-engineeringed biphasic drug release by electrospun nanofiber meshes


    loading  Checking for direct PDF access through Ovid

Abstract

A drug-loaded nanofiber mesh which could achieve time-engineeringed biphasic release was fabricated through sequential electrospinning. The drug to polymer ratio of each single mesh was allocated and designed before the tri-layered meshes were created. The resultant meshes had the following construction: (i) the first drug-loaded mesh (top side), (ii) the second drug-loaded mesh (second side), and (iii) the third drug-loaded mesh (bottom side). The drug release speed and duration were controlled by designing morphological features of the electrospun meshes such as the fiber diameter and mesh thickness. An in vitro release experiment revealed that the tri-layered construction with distinct morphological features of each component mesh can provide biphasic drug release. The time-engineeringed dual release system using the multilayered electrospun nanofiber meshes was proved to be a useful formulation when achieving controlled drug release at different times.

    loading  Loading Related Articles