Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect


    loading  Checking for direct PDF access through Ovid

Abstract

Acute lung injury (ALI) is a severe disease, leading to death if not treated quickly. An emergency medicine is necessary for ALI therapy. Dimethyl silicone (DMS) is an effective agent to defoam the bubbles in the lung induced by ALI. However, DMS aerosols, a marketed formulation of DMS, affect environments and will be limited in the future. Here we firstly report a dry nanoemulsion inhalation for pulmonary delivery. Novel DMS dry nanoemulsion inhalations (DSNIs) were developed in this study. The optimal formulation of stable and homogenous DMS nanoemulsions (DSNs) was composed of Cremophor RH40/PEG 400/DMS (4:4:2, w/w/w) and water. The DSNs showed the tiny size of 19.8 nm, the zeta potential of −9.66 mV, and the low polydispersity index (PDI) of 0.37. The type of DSNs was identified as oil-in-water. The DSNs were added with mannitol followed by freeze-drying to obtain the DSNIs that were loose white powders, showed good fluidity, and were capable of rapid reconstitution to DSNs. The DSNs could adhere on the surfaces of lyophilized mannitol crystals. The aerodynamic diameter of DSNIs was 4.82 μm, suitable for pulmonary inhalation. The in vitro defoaming rate of DSNIs was 1.25 ml/s, much faster than those of the blank DSNIs, DMS, and DMS aerosols. The DSNIs showed significantly higher anti-ALI effect on the ALI rat models than the blank DSNIs and the DMS aerosols according to lung appearances, histological sections, and lung wet weight/dry weight ratios. The DSNIs are effective anti-ALI nanomedicines. The novel DMS formulation is a promising replacement of DMS aerosols.

    loading  Loading Related Articles