pH-responsive PepFect cell-penetrating peptides


    loading  Checking for direct PDF access through Ovid

Abstract

A series of cell-penetrating PepFect peptide analogues was developed by substitutions of the galanin-derived N-terminal sequence. Histidine modifications were incorporated in order to make the peptides pH-responsive. The peptides were all able to form non-covalent complexes with an oligonucleotide cargo by co-incubation in buffer. The complexes were characterized by dynamic light scattering and circular dichroism, and an assay to evaluate the peptide-cargo affinity was developed. Cellular bioactivity was studied in HeLa cells using a luciferase-based splice correction assay. In addition, the membrane interactions of the peptides in large unilammelar vesicles was studied using a calcein leakage assay.The effects of substitutions were found to be dependent of the non-modified, C-terminal sequence of the peptides; for analogues of PepFect 3 we observed an increase in membrane activity and bioactivity for histidine-containing analogues, whereas the same modifications introduced to PepFect 14 lead to a decreased bioactivity. Peptides modified with a leucine/histidine sequence were found to be pH responsive, complexes formed from these peptides were small at pH 7 and grew under acidic conditions. The most promising of the novel PepFect 3 analogues, PepFect 132 has a significantly higher bioactivity and membrane activity than the parent peptide PepFect 3.Graphical abstract

    loading  Loading Related Articles