Mannosylated protamine as a novel DNA vaccine carrier for effective induction of anti-tumor immune responses

    loading  Checking for direct PDF access through Ovid


Graphical abstractGene immunotherapy has been developed as a promising strategy for inhibition of tumor growth. In the study, mannosylated protamine sulphate (MPS) was used as a novel DNA vaccine carrier to enhance transfection efficiency and anti-tumor immune responses. Anti-GRP DNA vaccine (pGRP) was selected as a model gene and condensed by MPS to form MPS/pGRP nanoparticles. The cellular uptake and transfection efficiency of MPS/pGRP nanoparticles in macrophages were evaluated. The effect of the nanoparticles in enhancing GRP-specific humoral immune response was then evaluated by nasal vaccination of nanoparticles in mice. The results demonstrated that both the cellular uptake and transfection efficiency of MPS nanoparticles in macrophages were higher than those of protamine nanoparticles. MPS/pGRP nanoparticles stimulated the production of higher titers (3.9 × 103) of specific antibodies against GRP than those of protamine/pGRP nanoparticles (6.4 × 102, p < 0.01) and intramuscular injection pGRP solution (2.5 × 103, p < 0.05). Furthermore, the inhibitory rate in MPS/pGRP nanoparticles group (65.80%) was significantly higher than that in protamine/pGRP nanoparticles group (35.13%) and pGRP solution group (43.39%). Hence, it is evident that MPS is an efficient targeting gene delivery carrier which could improve in vitro transfection efficiency as well as anti-tumor immunotherapy in mice.

    loading  Loading Related Articles