The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells

    loading  Checking for direct PDF access through Ovid


Graphical abstractRecently, electrospun nanofibrous scaffolds are vastly taken into consideration in the bone tissue engineering due to mimicking the natural structure of native tissue. In our study, surface features of nanofibers were modified through simultaneous electrospining of the synthetic and natural polymers using poly l-lactide (PLLA) and gelatin to fabricate the hybrid scaffold (PLLA/gelatin). Then, hydroxyapatite nanoparticles (nHA) were loaded in electrospun PLLA nanofibers (PLLA,nHA/gelatin) and also dexamethasone (DEX) was incorporated in these fibers (PLLA,nHA,DEX/gelatin) in the second experiment. Fabricated nanofibrous composite scaffolds were characterized via SEM, FTIR spectroscopy, contact angle, tensile strength measurements, DEX release profile and MTT assay. After seeding adipose derived mesenchymal stem cells, osteoinductivity and osteoconductivity of fabricated scaffolds were analyzed using common osteogenic markers such as alkaline phosphatase activity, calcium depositions and gene expression. These results confirmed that all properties of nanofibers were improved by modifications. Moreover, osteogenic differentiation of stem cells increased in PLLA,nHA/gelatin group in comparison with PLLA/gelatin. The sustained release of DEX was obtained from PLLA,nHA,DEX/gelatin which subsequently led to more osteogenic differentiation. Taken together, PLLA,nHA,DEX/gelatin showed significant potential to support the stem cell proliferation and ostogenic differentiation, and can be a good candidates for tissue engineering and regenerative medicine applications.

    loading  Loading Related Articles