Daphnetin attenuates microglial activation and proinflammatory factor production via multiple signaling pathways

    loading  Checking for direct PDF access through Ovid

Abstract

Daphnetin, a natural coumarin derivative, is known to display anti-inflammatory properties and has been used to treat inflammatory diseases. A novel finding suggested that daphnetin might have a neuroprotective effect in stressed mice, leading us to explore its role in the microglial inflammatory response, as well as its underlying mechanism of action. We found that the production of pro-inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), induced by lipopolysaccharide (LPS) or β-amyloid (Aβ) was significantly suppressed by daphnetin in a dose-dependent manner in BV2 microglia. Also, daphnetin inhibited LPS-induced nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and NO formation by microglia. Mechanistically, daphnetin blunted the transcriptional activity of nuclear factor-kappa B (NF-κB), which was associated with the down-regulation of the phosphorylation and nuclear translocation of RelA/p65. Inhibitors of kappa B (IκB) phosphorylation and degradation were also affected by daphnetin, which was likely due to the reduced activation of IκB kinase (IKK). Additionally, LPS-induced activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK, were, to a varying extent, altered by daphnetin. Finally, daphnetin blocked phosphatidylinositol-3 kinase (PI-3K)/protein kinase B (Akt) signaling in LPS-activated microglia, which appeared to at least partially account for the reduction in NF-κB transcriptional activity. Thus, daphnetin inhibited microglial activation and proinflammatory responses by modulating a series of intracellular signaling pathways, including IKK/IκB, MAPKs and PI-3K/Akt.

Related Topics

    loading  Loading Related Articles