Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats

    loading  Checking for direct PDF access through Ovid

Abstract

Genetic studies have demonstrated that sclerostin was a key negative regulator of bone formation. Sclerostin monoclonal antibody (Scl-Ab) treatment enhanced bone healing in experimental fracture healing. The purpose was to investigate the effects of systemic Scl-Ab administration on open fracture healing in young rats. Unilateral femoral fractures were generated in eight-week-old Sprague–Dawley rats. Rats were treated with vehicle or Scl-Ab for 6 weeks. Fracture healing was evaluated by western blotting, immunohistochemistry, histology, radiography, micro-CT, and biomechanical testing. In addition, the bone mass of intact femur was also evaluated by micro-CT. The results showed that, at 1 and 2 weeks after fracture, proliferating cell nuclear antigen (PCNA) score and bone morphogenetic protein-2 (BMP-2) expression in the Scl-Ab group were significantly increased compared with the control group. A decrease in cartilage in the Scl-Ab group was also observed after fracture, and this was accompanied by more rapider fracture healing. At 4 and 6 weeks, there were significant increases in bone mass and mechanical properties in the calluses from Scl-Ab group compared with control group. In addition, Scl-Ab treatment also showed significant anabolic effects in intact femur. In conclusion, systemic Scl-Ab administration has a significant enhancement in a rat femoral osteotomy model. These results support the therapeutic potential of Scl-Ab as a noninvasive strategy to enhance open fracture healing.

Related Topics

    loading  Loading Related Articles