Biochanin A protects lipopolysaccharide/D-galactosamine-induced acute liver injury in mice by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation

    loading  Checking for direct PDF access through Ovid


Biochanin A, an isoflavone existed in red clover and peanuts, has been reported to possess a wide spectrum of pharmacological activities, such as anti-inflammatory and antioxidant effects. However, the protective effects and mechanism of biochanin A on liver injury have not been reported. In this study, acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS) and d-galactosamine (D-GalN). Biochanin A was administrated 1 h prior to LPS/D-GalN challenge. Serum ALT, AST, IL-1β, and TNF-α levels, hepatic malondialdehyde (MDA), GPx, SOD, and Catalase contents, tissue histology, IL-1β, TNF-α, NLRP3, and Nrf2 expression were detected. The results showed that serum ALT, AST, IL-1β, and TNF-α levels and hepatic MDA content increased after LPS/GalN treatment. These changes were attenuated by biochanin A. Meanwhile, biochanin A dose-dependently up-regulated the expression of Nrf2 and HO-1. Biochanin A also inhibited hepatic IL-1β and TNF-α expression in a dose-dependent manner. Biochanin A did not inhibit LPS/D-GalN-induced hepatic NLRP3, ASC, and caspase-1 expression. However, the interaction of NLRP3 with ASC and caspase-1 were inhibited by biochanin A. In addition, LPS/D-GalN-induced up-regulation of thioredoxin-interacting protein (TXNIP) and interaction between TXNIP and NLRP3 were also inhibited by biochanin A. In conclusion, biochanin A protected against LPS/GalN-induced liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation.

Related Topics

    loading  Loading Related Articles