Construction and characterization of monoclonal antibodies against the extracellular domain of B-lymphocyte antigen CD20 using DNA immunization method

    loading  Checking for direct PDF access through Ovid

Abstract

To date, several new anti-CD20 monoclonal antibodies (mAbs) have been developed for potential efficacies compared with familiar mAb rituximab. Despite the recent advances in development of anti-CD20 mAbs for the treatment of B cell malignancies, the efforts should be continued to develop novel antibodies with improved properties. However, the development of mAbs against CD20 as a multi-transmembrane protein is challenging due to the difficulty of providing a lipid environment that can maintain native epitopes. To overcome this limitation, we describe a simple and efficient DNA immunization strategy for the construction of a novel anti-CD20 mAb with improved anti-tumour properties. Using a DNA immunization strategy that includes intradermal (i.d.) immunization with naked plasmid DNA encoding the CD20 gene, we generated the hybridoma cell line D4, which secretes functional mAbs against an extracellular epitope of CD20. Immunocytochemistry analysis and a cell-based enzyme-linked immunosorbent assay using a Burkitt's lymphoma cell line showed that D4 mAbs are capable of binding to native extracellular epitopes of CD20. Moreover, the binding specificity of D4 mAbs was determined by western blot analysis. Cell proliferation was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by the annexin V/propidium iodide staining and dye exclusion assay. The results showed that D4 anti-CD20 mAbs produced by DNA immunization exhibit potent growth inhibitory activity and have superior direct B-cell cytotoxicity compared to rituximab. We propose that antibody-induced apoptosis is one of the mechanisms of cell growth inhibition. Taken together, the data reported here open the path to DNA-based immunization for generating pharmacologically active monoclonal antibodies against CD20. In addition, the data support future in vivo animal testing and subsequent procedures to produce a potential therapeutic mAb.

Related Topics

    loading  Loading Related Articles