Ampelopsin attenuates lipopolysaccharide-induced inflammatory response through the inhibition of the NF-κB and JAK2/STAT3 signaling pathways in microglia

    loading  Checking for direct PDF access through Ovid


Increasing evidence suggests that microglia are a major cellular contributor to neuroinflammation. The present study investigated whether Ampelopsin (Amp), a type of flavanonol derivative from Ampelopsis grossedentata, may exert an anti-inflammatory effect on lipopolysaccharide (LPS)-induced BV2 and primary microglia cells. We found that pre-treatment of microglia cells with Amp before LPS with a non-cytotoxic concentration range decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). Amp also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) was obviously reduced by Amp. Our mechanistic study indicated that Amp suppressed LPS-induced activation of the IκB/NF-κB inflammation pathway without affecting changes in the phosphorylation levels of mitogen-activated protein kinases (MAPKs) in BV2 cells. Further studies revealed that Amp markedly reduced the phosphorylation levels of JAK2-STAT3 and STAT3 nuclear translocation. Overall, our data suggest that Amp can suppress the LPS-induced inflammatory response of microglial cells, indicating that Amp has potential for the treatment of inflammation-mediated neurodegenerative diseases.

Related Topics

    loading  Loading Related Articles