Multi-targeted protection of acetaminophen-induced hepatotoxicity in mice by tannic acid

    loading  Checking for direct PDF access through Ovid

Abstract

Tannic acid (TA) is the polyphenol that has beneficial health effects against oxidative stress. However, the hepatoprotective effects of TA are still relatively unknown. In the present study, we evaluated the effects of TA on an acetaminophen (APAP)-induced hepatotoxicity model, which was established by administration of 400 mg/kg of APAP. The levels of alanine transferase (ALT), aspartate transferase (AST), dendothelin-1 (ET-1), nitric oxide (NO) and malondialdehyde (MDA) in the APAP-induced hepatotoxicity mice were significantly increased (up to ˜200%), while their levels were reduced by pretreatment with TA (25 and 50 mg/kg) (P < 0.05). The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the APAP-induced hepatotoxicity mice were significantly reduced (lower to ˜65%), while their activities were increased by pretreatment with TA (25 and 50 mg/kg) (P < 0.05). In addition, pretreatment with oral TA (25 and 50 mg/kg) for 3 days before the APAP administration dose-dependently ameliorated changes in hepatic histopathology, suppressed overexpression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), c-fos, c-jun, NF-κB (p65) and caspase-3 (all P < 0.05), downregulated bax and upregulated bcl-2, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) (all P < 0.05) in the liver. These results indicate that TA exhibits significant hepatoprotective effects against APAP-induced hepatotoxicity and suggest that the hepatoprotective mechanisms of TA may be related to anti-oxidation, anti-inflammation and anti-apoptosis.

Related Topics

    loading  Loading Related Articles