Phorbol ester (PMA)-treated U937 cells cultured on type I collagen-coated dish express a lower production of pro-inflammatory cytokines through lowered ROS levels in parallel with cell aggregate formation

    loading  Checking for direct PDF access through Ovid


The present study is aimed to investigate the effect of collagen I on U937 cells, human monocyte-like histiocytic lymphoma cell line. Differentiation of U937 cells was induced by phorbol ester (PMA) treatment. The cells were cultured on the collagen I-coated plate. PMA-stimulated U937 cells formed multicellular aggregates on collagen I-coated surface, whereas PMA-unstimulated cells kept themselves away off each other. Moreover, the levels of reactive oxygen species (ROS) and productions of pro-inflammatory cytokines such as IL-1β, TNFα and PGE2, pro-inflammatory mediator, were down-regulated in differentiated U937 cells cultured on collagen I-coated dishes. However, collagen I did not influence the capacity of E. coli phagocytosis. Cell aggregation as well as the down-regulation of IL-1β, TNFα and PGE2 caused by the culture on collagen I-coated surface were suppressed by ROS donor, tert-butylhydroperoxide (tBHP). The sizes of cell aggregates became bigger in differentiated U937 cells by treatment with ROS scavengers such as N-acetylcysteine (NAC), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). In conclusion, collagen I-coated culture induces the differentiated U937 cells to form cell aggregates and decreases the production of pro-inflammatory cytokines through down-regulating ROS generation.HighlightsCollagen-coated culture promotes cell aggregation in PMA-treated U937 cells.Collagen-coated culture inhibits pro-inflammatory cytokine production in PMA-treated U937 cells.Collagen induces cell aggregation and inhibits cytokine secretion by down-regulating ROS generation.

    loading  Loading Related Articles