The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway

    loading  Checking for direct PDF access through Ovid


Toll-like receptors (TLRs) are closely related to cancer. However, the mechanism for TLR regulation of cancer is not fully understood. Our previous studies demonstrated that toll-like receptor (TLR) 4 functions to maintain the un-differential stem cell phenotypes of human endothelial progenitor cells. In this study, we found that human glioma cells expressed several TLRs. The activation of TLR4 by LPS in glioma U251 cells induced the expression of cytokines, including IL-1β, IL-6, IL-8, and TNFα, suggesting the functional expression of TLR4. Nude mouse in vivo studies showed that LPS treatment promoted tumor growth, and decreased mouse survival. But LPS treatment did not promote tumor cell proliferation in vitro. Meanwhile, we found that LPS treatment down-regulated the expression of glial fibrillary acidic protein (GFAP), an important differentiation maker of glioma, at both mRNA and protein levels. TLR4 activation also down-regulated GFAP in glioma Hs683 cells. LPS did not induce the activation of MAPKs, but induced the activation of NF-κB. However, pharmacological inhibition of NF-κB signaling did not reverse the down-regulation of GFAP. Furthermore, we found that LPS induced the activation of Notch pathway, which was MyD88-dependent, and Notch inhibition reversed the down-regulation of GFAP. In addition, LPS treatment up-regulated stem cell makers, including CD34 and CD133. Taken together, these results suggested that in human glioma U251 cells, TLR4 functions to reverse tumor differentiation, and it may be a target for glioma prevention and therapy.HighlightsGlioma U251 cells express functional TLR4.TLR4 activation promotes U251 growth in vivo.TLR4 activation reverses U251 differentiation.TLR4-induced Notch signaling contributes to the reversion of U251 differentiation.TLR4 activation up-regulates the markers of cancer stem cell in U251 cells.

    loading  Loading Related Articles