Melatonin inhibits endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in lipopolysaccharide-induced endometritis in mice

    loading  Checking for direct PDF access through Ovid


Endometritis, an inflammatory response of the uterus tissue, is characterized by the production of inflammatory cytokines and migration of neutrophil (PMN) into the uterus tissue. Melatonin has been demonstrated to have anti-inflammatory and antioxidant effects. The purpose of this study was to investigate the protective effects of melatonin on lipopolysaccharide (LPS)-induced endometritis in mice. An endometritis model was induced by LPS and melatonin was given 1 h before LPS treatment. The results showed that melatonin inhibited LPS-induced pathologic changes, Myeloperoxidase (MPO) activity, and levels of interleukin-1 beta (IL-1β). Melatonin also inhibited LPS-induced thioredoxin-interacting protein (TXNIP)/NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) activation, reactive oxygen species (ROS) production, and endoplasmic reticulum (ER) stress. Furthermore, melatonin was found to increase AMPK activity. In conclusion, our results demonstrated that melatonin inhibited ER stress-associated TXNIP/NLRP3 inflammasome activation with a regulation of adenosine monophosphate activated protein kinase (AMPK) in LPS-induced endometritis. Melatonin may serve as a promising nutritional supplement for the treatment of endometritis.Graphical abstractHighlightsMelatonin protects LPS-induced endometritis through anti-inflammation and anti-oxidant pathways.Melatonin inhibits TXNIP/NLRP3 inflammasome activation induced by LPS.Melatonin increases AMPK activity induced by LPS.

    loading  Loading Related Articles