Mapping an Extended Neurochemical Profile at 3 and 7 T Using Accelerated High-Resolution Proton Magnetic Resonance Spectroscopic Imaging

    loading  Checking for direct PDF access through Ovid


ObjectivesThe aim of this study was to compare high-resolution free induction decay magnetic resonance spectroscopic imaging (FID-MRSI) at 3 T and 7 T in the brain of healthy subjects and to showcase the clinical potential of accelerated FID-MRSI at 7 T in 2 brain tumor cases.Materials and MethodsIn this institutional review board–approved study, 10 healthy volunteers (8 men/2 women; age: 31 ± 6 years) were measured at 3 T and 7 T (Trio and 7T-Magnetom; Siemens Healthcare, Germany) and 2 patients (a 38-year-old man and a 37-year-old man), 1 with an anaplastic oligoastrocytoma (grade III) and 1 with a low-grade glioma (oligodendroglioma), were measured at 7 T.Free induction decay MR spectroscopic imaging with 3.4 × 3.4 mm2 in-plane resolution was acquired in 30 minutes/6 minutes (nonaccelerated/accelerated) at both field strengths. In addition, single-slice or multi-slice FID-MRSI at 7 T was measured in the 2 tumor patients at 7 T within 6 minutes/13.3 minutes. Signal-to-noise ratio, Cramer-Rao lower bounds, and parallel imaging efficiency were assessed. High-resolution maps were created for 9 different brain metabolites.ResultsAt 7 T, 7 of 9 metabolites were reliably mapped over the whole slice but only 3 at 3 T. Parallel imaging efficiency was significantly improved at 7 T. Signal-to-noise ratios were +75%/+66% (P < 0.05) for N-acetylaspartate and +97%/+74%(P < 0.05) for glutamine + glutamate [Glx], and full-widths at half maximum were +112%/+109%(P < 0.05) higher at 7 T than at 3 T (nonaccelerated/accelerated) for N-acetylaspartate. Cramer-Rao lower bounds were more than double at 3 T (P < 0.05).ConclusionsAt 7 T, FID-MRSI allowed the assessment of an extended neurochemical profile and yielded better metabolic maps in only approximately 6 minutes at 7 T than in approximately 30 minutes at 3 T. We found several potentially therapy-relevant neurochemical alterations in brain tumors that highlighted the potential of fast clinical FID-MRSI at 7 T.

    loading  Loading Related Articles