Modeling subsurface drainage for salt load management in southeastern Australia

    loading  Checking for direct PDF access through Ovid

Abstract

Subsurface drainage has been implemented in irrigation areas of South-eastern Australia to control water logging and land salinisation. Subsurface drainage has been identified as a major salt exporter from irrigated areas. The water table management simulation model DRAINMOD-S was evaluated to simulate daily water table depth, drain outflow, and salt loads by using experimental field data from a two year field trial was carried out in the Murrumbidgee Irrigation Area South-eastern Australia to study different options for subsurface drainage system design and management to reduce salt load export. Three subsurface drainage systems were modeled, deep widely spaced pipe drains, shallow closely spaced drains and deep pipe drains that were managed with weirs to prevent flow when the water table fell below 1.2 m. The reliability of the model has been evaluated by comparing observed and simulated values. Good agreement was found between the observed and simulated values. The model confirmed the field observations that shallow drains had the lowest salt load and that by managing deep drains with weirs salt loads could be significantly reduced. This work shows the value of the DRAINMOD-S model in being able to describe various drainage design and management strategies under the semi-arid conditions of South-eastern Australia. The model can now be used to investigate design and management options in detail for different site conditions. This will assist decision makers in providing appropriate subsurface drainage management policies to meet drainage disposal constraints within integrated water resources management planning.

Related Topics

    loading  Loading Related Articles