Modulation of wound contracture α-smooth muscle actin and multispecific vitronectin receptor integrin αvβ3 in the rabbit's experimental model

    loading  Checking for direct PDF access through Ovid

Abstract

The myofibroblast, a major component of granulation tissue, is a key cell during wound healing, tissue repair and connective tissue remodelling. Persistence of myofibroblasts within a fibrotic lesion leads to excessive scarring impairing function and aesthetics. Various wound-healing cytokines can be modulated by topical application of active agents to promote optimal wound healing and improve scar quality. Thus, the myofibroblast may represent an important target for wound-healing modulation to improve the evolution of conditions such as hypertrophic scars. The purpose of this work is to study the modulation of myofibroblasts and integrin αvβ3 in a full thickness wound performed on rabbits treated with different topical agents using: (1) saline, (2) Tegaderm occlusive dressing (3) silver sulfadiazine and (4) moist exposed burn ointment (MEBO). The reepithelialisation was 4 days faster in the MEBO group compared with the other therapies with less oedema formation, delayed contraction, less inflammatory cells and the lowest transepidermal water loss (TEWL) resulting in a soft scar. Although α-smooth muscle actin (α-SMA) was the highest around day 12 in the MEBO group, wound contraction and myofibroblast's activity were the least for the same period probably because of a downregulation of the integrin αvβ3. It seems that the effect of MEBO could be more pronounced on force transmission rather then on force generation. Greater insight into the pathology of scars may translate into non surgical treatments in the future and further work in myofibroblast biology will eventually result in efficient pharmacological tools, improving the evolution of healing and scar formation.

Related Topics

    loading  Loading Related Articles