Modularity of Prosthetic Implants

    loading  Checking for direct PDF access through Ovid

Abstract

The vast majority of total-joint-replacement components currently utilized are modular to some degree. Modularity reduces inventory and increases the surgeon's options in both primary and revision total-joint arthroplasty. Use of a modular interface, however, increases the risk of fretting, wear debris, and dissociation and mismatching of components. The use of modular heads in total hip replacement is firmly established. The occurrence of corrosion and fretting has been recognized, and most manufacturers have improved the quality of the interface to minimize these problems. Modular polyethylene liners also offer advantages, particularly in revision procedures, where the option of additional screw fixation remains important. Many uncemented acetabular components are inserted without screws, which may generate renewed interest in one-piece factory-preassembled components. The conformity, locking mechanism, and nonarticular interface of modular acetabular components have all been studied and improved. Modular tibial components offer additional flexibility in the performance of total knee replacement but introduce the risk of dissociation and increased polyethylene wear; in revision procedures, modularity provides a valuable option for dealing with bone loss and an additional method of fixation by means of press-fit stems. Modular humeral components offer a significant advantage with limited apparent risk; however, longer clinical experience is required to assess potential problems.

Related Topics

    loading  Loading Related Articles