Anin vivogenetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

Myb-Like, SWIRM, and MPN domains 1 (MYSM1) is a metalloprotease that deubiquitinates the K119-monoubiquitinated form of histone 2A (H2A), a chromatin marker associated with gene transcription silencing. Likewise, it has been reported that murine Mysm1 participates in transcription derepression of genes, among which are transcription factors involved in hematopoietic stem cell homeostasis, hematopoiesis, and lymphocyte differentiation. However, whether MYSM1 has a similar function in human subjects remains unclear. Here we describe a patient presenting with a complete lack of B lymphocytes, T-cell lymphopenia, defective hematopoiesis, and developmental abnormalities.

Objectives:

We sought to characterize the underlying genetic cause of this syndrome.

Methods:

We performed genome-wide homozygosity mapping, followed by whole-exome sequencing.

Results:

Genetic analysis revealed that this novel disorder is caused by a homozygousMYSM1missense mutation affecting the catalytic site within the deubiquitinase JAB1/MPN/Mov34 (JAMM)/MPN domain. Remarkably, during the course of our study, the patient recovered a normal immunohematologic phenotype. Genetic analysis indicated that this improvement originated from a spontaneous genetic reversion of theMYSM1mutation in a hematopoietic stem cell.

Conclusions:

We here define a novel human immunodeficiency and provide evidence that MYSM1 is essential for proper immunohematopoietic development in human subjects. In addition, we describe one of the few examples of spontaneousin vivogenetic cure of a human immunodeficiency.

Related Topics

    loading  Loading Related Articles