Optimizing radiation dose by varying age at pediatric temporal bone CT

    loading  Checking for direct PDF access through Ovid


We performed retrospective (first-step) and prospective (second-step) studies to evaluate the body information and noise on temporal bone computed tomography (CT) images in efforts to identify the optimized tube current yielding the greatest reduction in the radiation exposure of pediatric patients undergoing temporal bone CT studies. Our first-step study included 90 patients subjected to temporal bone CT. We recorded displayed volume CT dose index (Symbol), displayed dose-length product (DLP), image noise, and the patient age and sex. We then calculated the optimized tube current value with and without IR corresponding to the children's age based on the ratio of the noise on images from individuals older than 18 years. In our second-step study, we enrolled 23 pediatric patients and obtained CT scans using our optimized protocol. In both studies we applied identical analysis techniques. The diagnostic image quality was confirmed reading reports and a neuroradiologist. Our first-step study indicated that the mean image noise in children assigned to five ascending age groups from 2 to 12 years ranged from 167.59 to 211.44 Hounsfield units (HU). In the second-step study, the mean image noise in each age group was almost the same as the expected noise value and the diagnostic image quality was acceptable. The dose reduction was ranged from 57.5% to 37.5%. Optimization of the tube current–time product allows a radiation reduction without a loss in image quality in pediatric patients undergoing temporal bone CT.

PACS number: 87.57.qp, 87.57.cm

Related Topics

    loading  Loading Related Articles