Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona)

    loading  Checking for direct PDF access through Ovid

Abstract

Caecilians (order Gymnophiona) are elongate, limbless, snake-like amphibians that are the sister-group (closest relatives) of all other recent amphibians (frogs and salamanders). Little is known of their cardiovascular anatomy and physiology, but one nearly century old study suggests that Hypogeophis (family Indotyphlidae), commonly relied upon as a representative caecilian species, has atrial septation in the frontal plane and more than one septum. In contrast, in other vertebrates there generally is one atrial septum in the sagittal plane. We studied the adult heart of Idiocranium (also Indotyphlidae) using immunohistochemistry and confirm that the interatrial septum is close to the frontal plane. Additionally, a parallel right atrial septum divides three-fourths of the right atrial cavity of this species. Idiocranium embryos in the Hill collection reveal that atrial septation initiates in the sagittal plane as in other tetrapods. Late developmental stages, however, see a left-ward shift of visceral organs and a concordant rotation of the atria that reorients the atrial septa towards the frontal plane. The gross anatomies of species from six other caecilian families reveal that (i) the right atrial septum developed early in caecilian evolution (only absent in Rhinatrematidae) and that (ii) rotation of the atria evolved later and its degree varies between families. In most vertebrates a prominent atrial trabeculation associates with the sinuatrial valve, the so-called septum spurium, and the right atrial septum seems homologous to this trabeculation but much more developed. The right atrial septum does not appear to be a consequence of body elongation because it is absent in some caecilians and in snakes. The interatrial septum of caecilians shares multiple characters with the atrial septum of lungfishes, salamanders and the embryonic septum primum of amniotes. In conclusion, atrial septation in caecilians is based on evolutionarily conserved structures but possibly exhibits greater variation than in any other vertebrate order.

Related Topics

    loading  Loading Related Articles