Prognostic Value of Left Ventricular Deformation Parameters in Patients with Severe Aortic Stenosis: A Pilot Study of the Usefulness of Strain Echocardiography

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

In patients with aortic stenosis, subtle alterations in myocardial mechanics can be detected by speckle-tracking echocardiography before reduction of left ventricular ejection fraction (LVEF).

Methods:

In this prospective study, 162 patients with aortic stenosis with an average aortic valve area of 0.7 ± 0.2 cm2 and a mean LVEF of 60 ± 11% were included. Global longitudinal strain (GLS) and mechanical dispersion (SD of time from Q/R on the electrocardiogram to peak strain in 16 left ventricular segments) were assessed using echocardiography, and all-cause mortality (n = 37) was recorded during 37 ± 13 months of follow-up.

Results:

Overall, nonsurvivors had more pronounced mechanical dispersion and worse GLS compared with survivors (74 ± 24 vs 61 ± 18 msec [P < .01] and −14.5 ± 4.4% vs −16.7 ± 3.6% [P < .01], respectively). In the 42 conservatively treated patients without surgical aortic valve replacement, a similar pattern was observed in nonsurvivors versus survivors (mechanical dispersion, 80 ± 24 vs 57 ± 14 msec [P < .01]; GLS, −14.0 ± 4.9% vs −17.1 ± 3.8% [P = .04], respectively). Mechanical dispersion was significantly associated with mortality (hazard ratio per 10-msec increase, 1.23; 95% CI, 1.07–1.42; P < .01) in a Cox model adjusted for LVEF and with aortic valve replacement treatment as a time-dependent covariate. Continuous net reclassification improvement showed that mechanical dispersion was incremental to LVEF, GLS, and valvulo-arterial impedance when adjusting for aortic valve replacement treatment in the total population.

Conclusion:

Increased mechanical dispersion may be a risk marker providing novel prognostic information in patients with aortic stenosis.

Related Topics

    loading  Loading Related Articles