Association Between Real-time Electronic Injury Surveillance Applications and Clinical Documentation and Data Acquisition in a South African Trauma Center

    loading  Checking for direct PDF access through Ovid

Abstract

Importance

Collection and analysis of up-to-date and accurate injury surveillance data are a key step in the maturation of trauma systems. Trauma registries have proven to be difficult to establish in low- and middle-income countries owing to the burden of trauma volume, cost, and complexity.

Objective

To determine whether an electronic trauma health record (eTHR) used by physicians can serve as simultaneous clinical documentation and data acquisition tools.

Design, Setting, and Participants

This 2-part quality improvement study included (1) preimplementation and postimplementation eTHR study with assessments of satisfaction by 41 trauma physicians, time to completion, and quality of data collected comparing paper and electronic charting; and (2) prospective ecologic study describing the burden of trauma seen at a Level I trauma center, using real-time data collected by the eTHR on consecutive patients during a 12-month study period. The study was conducted from October 1, 2010, to September 30, 2011, at Groote Schuur Hospital, Cape Town, South Africa. Data analysis was performed from October 15, 2011, to January 15, 2013.

Main Outcomes and Measures

The primary outcome of part 1 was data field competition rates of pertinent trauma registry items obtained through electronic or paper documentation. The main measures of part 2 were to identify risk factors to trauma in Cape Town and quality indicators recommended for trauma system evaluation at Groote Schuur Hospital.

Results

The 41 physicians included in the study found the electronic patient documentation to be more efficient and preferable. A total of 11 612 trauma presentations were accurately documented and promptly analyzed. Fields relevant to injury surveillance in the eTHR (n = 11 612) had statistically significant higher completion rates compared with paper records (n = 9236) (for all comparisons, P < .001). The eTHR successfully captured quality indicators recommended for trauma system evaluation which were previously challenging to collect in a timely and accurate manner. Of the 11 612 patient admissions over the study period, injury location was captured 11 075 times (95.4%), injury mechanism 11 135 times (95.9%), systolic blood pressure 11 106 times (95.6%), and Glasgow Coma Scale 11 140 times (95.9%). These fields were successfully captured with statistically higher rates than previous paper documentation. Epidemiologic analysis confirmed a heavy burden of violence-related injury (51.8% of all injuries) and motor vehicle crash injuries (14.3% of all injuries). Mapping analysis demonstrated clusters of injuries originating mainly from vulnerable and low-income neighborhoods and their respective referring trauma facilities, Mitchell’s Plain Hospital (734 [10.1%]), Guguletu Community Health Center (654 [9.0%]), and New Somerset Hospital (400 [5.5%]).

Conclusions and Relevance

Accurate capture and simultaneous analysis of trauma data in low-resource trauma settings are feasible through the integration of surveillance into clinical workflow and the timely analysis of electronic data.

Related Topics

    loading  Loading Related Articles