Effect of prooxidants on yeast mitochondria

    loading  Checking for direct PDF access through Ovid


Tightly coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts were used in this study. The two yeasts are aerobes containing the fully competent respiratory chain with three energy conservation sites. Interaction of the yeast mitochondria with prooxidants (diamide, menadione, oxaloacetate, phenylarsine oxide, hydrogen peroxide, t-butyl peroxide, and ascorbate plus Fe2+) was studied. The prooxidants, depending on their chemical nature, either caused uncoupling (e.g., activated state 4 respiration) or inhibited oxidation of respiratory substrates. All of the agents dissipated the membrane potential without megachannel formation (no large-scale swelling of mitochondria was observed). Except for combined application of ascorbate and Fe2+, the prooxidantinduced decrease in the membrane potential was specifically prevented by ATP, even in the cases when classic antioxidants, e.g., N-acetylcysteine, were ineffective. No permeabilization of yeast mitochondria was observed under concerted action of prooxidants and Ca2+, suggesting that an mPTP-like pore, if it ever occurs in yeast mitochondria, is not coupled with Ca2+ uptake.

Related Topics

    loading  Loading Related Articles