A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes ofTrypanosoma cruzi

    loading  Checking for direct PDF access through Ovid


Trypanosoma cruzi is a hemoflagellate protozoan that causes Chagas’ disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host. Herein, we performed a functional assessment of mitochondrial metabolism in the following two distinct evolutive forms of T. cruzi: the insect stage epimastigote and the freshly isolated bloodstream trypomastigote. We observed that in comparison to epimastigotes, bloodstream trypomastigotes facilitate the entry of electrons into the electron transport chain by increasing complex II-III activity. Interestingly, cytochrome c oxidase (CCO) activity and the expression of CCO subunit IV were reduced in bloodstream forms, creating an “electron bottleneck” that favored an increase in electron leakage and H2O2 formation. We propose that the oxidative preconditioning provided by this mechanism confers protection to bloodstream trypomastigotes against the host immune system. In this scenario, mitochondrial remodeling during the T. cruzi life cycle may represent a key metabolic adaptation for parasite survival in different hosts.

Related Topics

    loading  Loading Related Articles