N-Terminal Modification and Its Effect on the Biochemical Characteristics of Akazara Scallop Tropomyosins Expressed in Escherichia coli

    loading  Checking for direct PDF access through Ovid


Akazara scallop striated muscle tropomyosin mutants without a fused amino acid (nf-Tm), and with Ala- (A-Tm) or Asp-Ala- (DA-Tm) fused at the N-terminus were expressed in Escherichia coli cells. Among them, nf-Tm alone has an initial methionine. The native Akazara scallop tropomyosin and DA-Tm showed similar α-helix contents and intrinsic viscosity, but nf-Tm and A-Tm exhibited lower values than those of the native tropomyosin. According to the relative viscosity, all the expressed tropomyosins appear to have lost head-to-tail polymerization ability. Though nf-Tm has extremely low actin-binding ability, the ability was almost completely recovered with a two amino acid fusion but incompletely with a one amino acid fusion. On the other hand, an amino acid fusion, irrespective of the number, seemed to inhibit the Mg-ATPase activity of actomyosin. However, the bacterially expressed tropomyosins together with Akazara scallop troponin do not confer the full Ca2+-regulation ability of Mg-ATPase activity of actomyosin. These results support that N-terminal blocking probably by an acetyl group of Akazara scallop tropomyosin plays an important role not only in head-to-tail polymerization and actin-binding, as known for vertebrate tropomyosin, but also in maintaining the secondary or higher structure and Ca2+-regulation together with troponin.

    loading  Loading Related Articles