Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation

    loading  Checking for direct PDF access through Ovid


Most of bacteria can swim by rotating flagella bidirectionally. The C ring, located at the bottom of the flagellum and in the cytoplasmic space, consists of FliG, FliM and FliN, and has an important function in flagellar protein secretion, torque generation and rotational switch of the motor. FliG is the most important part of the C ring that interacts directly with a stator subunit. Here, we introduced a three-amino acids in-frame deletion mutation (ΔPSA) into FliG from Vibrio alginolyticus, whose corresponding mutation in Salmonella confers a switch-locked phenotype, and examined its phenotype. We found that this FliG mutant could not produce flagellar filaments in a fliG null strain but the FliG(ΔPSA) protein could localize at the cell pole as does the wild-type protein. Unexpectedly, when this mutant was expressed in a wild-type strain, cells formed flagella efficiently but the motor could not rotate. We propose that this different phenotype in Vibrio and Salmonella might be due to distinct interactions between FliG mutant and FliM in the C ring between the bacterial species.

Related Topics

    loading  Loading Related Articles