Muscle Microvascular Blood Flow, Oxygenation, pH, and Perfusion Pressure Decrease in Simulated Acute Compartment Syndrome

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

The current gold standard for diagnosing acute compartment syndrome (ACS) is an assessment of clinical signs, invasive measurement of intramuscular pressure (IMP), and measurement of local perfusion pressure. However, IMP measurements have several shortcomings, including pain, risk of infection, risk of technique error, plugging of the catheter tip, lack of consensus on the diagnostic pressure threshold, and lack of specificity and sensitivity. The objective of this study was to evaluate muscle hemodynamics, oxygenation, and pH as diagnostic parameters in a human model of ACS. We hypothesized that as IMP increases, muscle microvascular blood flow, oxygenation, and pH decrease in the anterior compartment of a leg at heart level and that they decrease significantly more when the leg is elevated further.

Methods:

An external pneumatic leg pressure chamber, combined with a venous stasis thigh cuff, was used to increase IMP and simulate ACS. Eight healthy subjects (5 males and 3 females; mean age, 26 years) had photoplethysmography and near-infrared spectroscopy-pH sensors placed over the middle aspect of the tibialis anterior muscle of the right (experimental) and left (control) legs. Leg chamber pressure conditions (40, 50, and 60 mm Hg) were applied in a randomized order after baseline measurements were taken. Data were collected continuously for each 11-minute pressure condition, with an 11-minute recovery period after each condition, and the average of the last 6 minutes was used for data analyses. The same protocol was repeated with each subject’s legs elevated 12 cm above heart level. Data were analyzed using repeated-measures analysis of variance (ANOVA).

Results:

As IMP increased, muscle microvascular blood flow (p = 0.01), oxygenation (p < 0.001), and pH (p < 0.001) all decreased significantly in the experimental leg compared with the control leg. At all IMP levels, leg elevation significantly decreased muscle oxygenation (p = 0.013) and perfusion pressure (p = 0.03) compared with the control leg at heart level.

Conclusions:

These results indicate that muscle microvascular blood flow, oxygenation, pH, and perfusion pressure decrease significantly as IMP increases in a human model of ACS.

Clinical Relevance:

This study identifies hemodynamic and metabolic parameters as potential noninvasive diagnostic tools for ACS.

Related Topics

    loading  Loading Related Articles