Na+/Ca2+ Exchanger Expression and Function in a Rabbit Model of Myocardial Infarction

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

In general, sarcolemmal Na+/Ca2+ exchanger (NCX) protein and activity is increased in hearts with ventricular dysfunction. However, in a subset of studies, reduced activity of NCX has been reported. Left ventricular dysfunction (LVD) was induced in the rabbit eight weeks after an apical myocardial infarction.

Methods

Using single microelectrode voltage clamp to assess the NCX activity in isolated ventricular cells, a decrease in NCX activity by ∼30% was observed. Immunoblot analysis indicated increased NCX protein levels by ∼20% in the LVD group. The cause of this paradox is unknown. Overexpression of the protein sorcin increased the activity of NCX without affecting NCX protein levels.

Results

Sorcin protein (dimer) levels were significantly lower in the LVD group (0.67 ± 0.05 n = 15, P < 0.05) compared to sham (1.0 ± 0.16, n = 15). Sorcin monomer levels were not significantly different (sham: 1.0 ± 0.26, LVD: 0.83 ± 0.13). Mathematical modeling of NCX suggests that a reduction of NCX activity during diastole to that in LVD could be achieved by holding the diastolic membrane potential at −60 mV instead of −80 mV. Holding Em at −60 mV decreased NCX-mediated Ca2+ efflux rates to values comparable to those seen in LVD and increased SR Ca2+ content and peak systolic [Ca2+] in sham and LVD cardiomyocytes.

Conclusions

In conclusion, reduced sorcin expression may be linked to the lower NCX activity in the rabbit model of LVD. Reduced NCX activity during diastole increases SR Ca2+ content and Ca2+ transient amplitude.

Related Topics

    loading  Loading Related Articles