Critical Role of Histone Acetylation by p300 in Human Placental 11β-HSD2 Expression

    loading  Checking for direct PDF access through Ovid

Abstract

Context:

Fetal overexposure to glucocorticoids leads to growth restriction. Optimal fetal glucocorticoid level is ensured by the expression of cortisol-inactivating enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in placental syncytiotrophoblasts. The transcription factor selective promoter factor 1 (Sp1) is known to up-regulate 11β-HSD2 expression in the presence of enhanced histone acetylation in syncytiotrophoblasts, but the mechanisms underlying histone acetylation remain unknown.

Objectives:

The role of p300 in histone acetylation associated with 11β-HSD2 expression in syncytiotrophoblasts was investigated.

Design:

Distribution of p300 in human placenta was studied with immunohistochemistry. The role of p300 in histone-3 (H3) acetylation in association with 11β-HSD2 expression was investigated in cultured primary human placental trophoblasts in the presence of small interfering RNA (siRNA)-mediated knockdown of p300, p300 inhibitor C646, or p300 overexpression. The interaction of Sp1 and p300 was studied with chromatin immunoprecipitation and coimmunoprecipitation.

Results:

Intense staining of p300 was found in the nuclei of trophoblasts. Levels of p300 and acetyl H3K9 and H3K27 associated with 11β-HSD2 promoter were increased in the course of syncytialization and by cAMP pathway activation. Chromatin immunoprecipitation and coimmunoprecipitation revealed p300 and Sp1 on 11β-HSD2 promoter and in the same protein complex in the syncytiotrophoblasts. Overexpression of p300 enhanced 11β-HSD2 expression, which was attenuated by Sp1 knockdown, whereas p300 knockdown and C646 reduced both basal and cAMP-stimulated acetylation of H3K9 and H3K27 associated with 11β-HSD2 expression.

Conclusions:

Interaction of p300 with Sp1 plays a crucial role in histone acetylation associated with 11β-HSD2 expression in syncytiotrophoblasts, which may have important implications in the establishment of the placental glucocorticoid barrier in gestation.

Related Topics

    loading  Loading Related Articles