Antiproliferative and Proapoptotic Activity of Sunitinib on Endothelial and Anaplastic Thyroid Cancer Cells via Inhibition of Akt and ERK1/2 Phosphorylation and by Down-Regulation of Cyclin-D1

    loading  Checking for direct PDF access through Ovid

Abstract

Context:

Recent experimental evidence suggests a rationale for the use of multitarget tyrosine kinase inhibitors for the treatment of thyroid cancers. Sunitinib showed promising preliminary results against anaplastic thyroid cancer (ATC), and it has been used for some patients who are ineligible for clinical trials.

Objectives:

The aims of this study were to investigate the in vitro and in vivo activity of sunitinib on ATC and on microvascular endothelial cells and the molecular mechanism for the observed sunitinib activity.

Methods:

Proliferation and apoptotic assays were performed on human dermal microvascular endothelial and on BRAF- or H-ras-mutated ATC cells (8305C and FB3, respectively) after in vitro exposure to sunitinib for 72 hours. Vascular endothelial growth factor receptor-2, epithelial growth factor receptor, ERK1/2, and Akt phosphorylation was quantified by ELISA and Western blot. Cyclin-D1 mRNA expression was evaluated by real-time PCR, and cyclin-D1 intracellular concentrations were measured by ELISA. 8305C tumor xenografts in nude mice were treated with sunitinib at 50 mg/kg/d (ip).

Results:

Antiproliferative and proapoptotic activity of sunitinib was observed in both endothelial and ATC cells. Phospho-vascular endothelial growth factor receptor-2 levels significantly decreased after sunitinib treatment in activated endothelial cells. Phospho-epidermal growth factor receptor, ERK1/2, and Akt phosphorylation was significantly inhibited by sunitinib treatment in endothelial and cancer cells, and cyclin-D1 mRNA and protein expression was inhibited. Sunitinib administration in vivo caused significant inhibition of tumor growth (P < .05).

Conclusions:

Sunitinib is active in vitro and in vivo against activated endothelial and ATC cells via the inhibition of Akt and ERK1/2 phosphorylation and through the down-regulation of cyclin-D1.

Related Topics

    loading  Loading Related Articles