Teriparatide Increases Strength of the Peripheral Skeleton in Premenopausal Women With Idiopathic Osteoporosis: A Pilot HR-pQCT Study

    loading  Checking for direct PDF access through Ovid



In premenopausal women with idiopathic osteoporosis (IOP), treatment with teriparatide leads to substantial improvement in bone density and quality at central skeletal sites. The effects of teriparatide may differ on cortical and trabecular bone and also at the central and the peripheral skeleton.


The objective of the study was to determine whether teriparatide was associated with improvements in compartmental volumetric bone mineral density (BMD), bone microarchitecture, and estimated bone strength of the distal radius and tibia as assessed by high-resolution peripheral quantitative computed tomography.

Design, Setting, and Participants:

Premenopausal women (n = 20, age 41 ± 5 y) with IOP (low trauma fractures and/or Z-scores ≤ −2.0) were scanned with high-resolution peripheral quantitative computed tomography at baseline and after 18 months of teriparatide treatment. Cortical and trabecular volumetric BMD and microarchitecture were measured by both standard and advanced techniques, including individual trabecula segmentation, and bone strength was estimated by finite element analysis.

Main Outcome Measures:

The total volumetric BMD and homogeneous bone stiffness were measured.


Trabecular volumetric BMD increased significantly by 2.6% (1.8, 6.2) [median (interquartile range)] at the radius and 2.5% (1.1, 3.6) at the tibia. In addition, trabecular plate bone volume fraction increased by 9.1% (2.1, 17.1) at the radius and 7.6% (1.0, 9.7) at the tibia. Cortical thickness and volumetric density did not change; however, cortical porosity increased at the radius but not at the tibia. Despite these changes, whole-bone stiffness and failure load estimated by finite element analysis increased at both the radius and tibia.


In premenopausal women with IOP, 18 months of teriparatide was associated with increases in trabecular volumetric BMD, improved trabecular microarchitecture, and estimated bone strength at both the radius and tibia.

Related Topics

    loading  Loading Related Articles