Circulating Cytokines Predict the Development of Insulin Resistance in a Prospective Finnish Population Cohort

    loading  Checking for direct PDF access through Ovid



Metabolic inflammation contributes to the development of insulin resistance (IR), but the roles of different inflammatory and other cytokines in this process remain unclear.


We aimed at analyzing the value of different cytokines in predicting future IR.

Design, Setting, and Participants:

We measured the serum concentrations of 48 cytokines from a nationwide cohort of 2200 Finns (the Cardiovascular Risk in Young Finns Study), and analyzed their role as independent risk factors for predicting the development of IR 4 years later.

Main Outcome Measures:

We used cross-sectional regression analysis adjusted for known IR risk factors (high age, body mass index, systolic blood pressure, triglycerides, smoking, physical inactivity, and low high-density lipoprotein cholesterol), C-reactive protein and 37 cytokines to find the determinants of continuous baseline IR (defined by homeostatic model assessment). A logistic regression model adjusted for the known risk factors, baseline IR, and 37 cytokines was used to predict the future IR.


Several cytokines, often in a sex-dependent manner, remained as independent determinants of current IR. In men, none of the cytokines was an independent predictive risk marker of future IR. In women, in contrast, IL-17 (odds ratio, 1.42 for 1-SD change in ln-transformed IL-17) and IL-18 (odds ratio, 1.37) were independently associated with the future IR. IL-17 levels also independently predicted the development of incident future IR (odds ratio, 1.48).


The systemic levels of the T helper 1 cell cytokine IL-18 and the T helper 17 cell cytokine IL-17 thus may have value in predicting future insulin sensitivity in women independently of classical IR risk factors.

Related Topics

    loading  Loading Related Articles