Functional effects of caloxin 1c2, a novel engineered selective inhibitor of plasma membrane Ca2+-pump isoform 4, on coronary artery

    loading  Checking for direct PDF access through Ovid

Abstract

Coronary artery smooth muscle expresses the plasma membrane Ca2+ pump (PMCA) isoforms PMCA4 and PMCA1. We previously reported the peptide inhibitor caloxin 1b1 that was obtained by using extracellular domain 1 of PMCA4 as the target (Am J Physiol Cell.290 [2006] C1341). To engineer inhibitors with greater affinity and isoform selectivity, we have now created a phage display library of caloxin 1b1-like peptides. We screened this library by affinity chromatography with PMCA from erythrocyte ghosts that contain mainly PMCA4 to obtain caloxin 1c2. Key properties of caloxin 1c2 are (a) Ki = 2.3 ± 0.3 μM which corresponds to a 20× higher affinity for PMCA4 than that of caloxin 1b1 and (b) it is selective for PMCA4 since it has greater than 10-fold affinity for PMCA4 than for PMCA1, 2 or 3. It had the following functional effects on coronary artery smooth muscle: (a) it increased basal tone of the de-endothelialized arteries; the increase being similar at 10, 20 or 50 μM, and (b) it enhanced the increase in the force of contraction at 0.05 but not at 1.6 mM extracellular Ca2+ when Ca2+ extrusion via the Na+–Ca2+ exchanger and the sarco/endoplasmic reticulum Ca2+ pump were inhibited. We conclude that PMCA4 is pivotal to Ca2+ extrusion in coronary artery smooth muscle. We anticipate caloxin 1c2 to aid in understanding the role of PMCA4 in signal transduction and home-ostasis due to its isoform selectivity and ability to act when added extracellularly.

Related Topics

    loading  Loading Related Articles