Essential role of gastric gland mucin in preventing gastric cancer in mice

    loading  Checking for direct PDF access through Ovid

Abstract

Gastric gland mucin secreted from the lower portion of the gastric mucosa contains unique O-linked oligosaccharides (O-glycans) having terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc). Previously, we identified human α1,4-N-acetylglucosaminyltransferase (α4GnT), which is responsible for the O-glycan biosynthesis and characterized αGlcNAc function in suppressing Helicobacter pylori in vitro. In the present study, we engineered A4gnt–/– mice to better understand its role in vivo. A4gnt–/– mice showed complete lack of αGlcNAc expression in gastric gland mucin. Surprisingly, all the mutant mice developed gastric adenocarcinoma through a hyperplasia-dysplasia-carcinoma sequence in the absence of H. pylori infection. Microarray and quantitative RT-PCR analysis revealed upregulation of genes encoding inflammatory chemokine ligands, proinflammatory cytokines, and growth factors, such as Ccl2, Il-11, and Hgf in the gastric mucosa of A4gnt–/– mice. Further supporting an important role for this O-glycan in cancer progression, we also observed significantly reduced αGlcNAc in human gastric adenocarcinoma and adenoma. Our results demonstrate that the absence of αGlcNAc triggers gastric tumorigenesis through inflammation-associated pathways in vivo. Thus, αGlcNAc-terminated gastric mucin plays dual roles in preventing gastric cancer by inhibiting H. pylori infection and also suppressing tumor-promoting inflammation.

Related Topics

    loading  Loading Related Articles