Casein kinase 1?–dependent feedback loop controls autophagy in RAS-driven cancers

    loading  Checking for direct PDF access through Ovid

Abstract

Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1? (CK1?), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1? enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1?, as depletion of CK1? reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1? protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1? increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1? inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1?-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers.

Related Topics

    loading  Loading Related Articles