Short “Infraslow” Activity (SISA) With Burst Suppression in Acute Anoxic Encephalopathy: A Rare, Specific Ominous Sign With Acute Posthypoxic Myoclonus or Acute Symptomatic Seizures


    loading  Checking for direct PDF access through Ovid

Abstract

Objective:Slow wave with frequency <0.5 Hz are recorded in various situations such as normal sleep, epileptic seizures. However, its clinical significance has not been fully clarified. Although infra-slow activity was recently defined as activity between 0.01 and 0.1 Hz, we focus on the activity recorded with time constant of 2 seconds for practical usage. We defined short “infraslow” activity (SISA) less than 0.5 Hz recorded with time constant of 2 seconds and investigated the occurrence and clinical significance of SISA in acute anoxic encephalopathy.Methods:This study evaluated the findings of electroencephalography in consecutive 98 comatose patients with acute anoxic encephalopathy after cardiac arrest. We first classified electroencephalography findings conventionally, then investigated SISA by time constant of 2 second and a high-cut filter of 120 Hz, to clarify the relationship between SISA and clinical profiles, especially of clinical outcomes and occurrence of acute posthypoxic myoclonus or acute symptomatic seizures.Results:Short infra-slow activity was found in six patients (6.2%), superimposed on the burst phase of the burst-suppression pattern. All six patients showed acute posthypoxic myoclonus or acute symptomatic seizures (generalized tonic–clonic seizures) and its prognosis was poor. This 100% occurrence of acute posthypoxic myoclonus or acute symptomatic seizures was significantly higher than that in patients without SISA (39.1%; P < 0.05).Conclusions:Short infra-slow activity in acute anoxic encephalopathy could be associated with acute posthypoxic myoclonus and acute symptomatic seizures. Short infra-slow activity could be a practically feasible biomarker for myoclonus or seizures and poor prognosis in acute anoxic encephalopathy, if it occurs with burst suppression.

    loading  Loading Related Articles