Modulation of cAMP-Mediated Vasorelaxation by Endothelial Nitric Oxide and Basal cGMP in Vascular Smooth Muscle

    loading  Checking for direct PDF access through Ovid

Abstract

Summary:

Recent in vitro evidence shows a role of endothelial nitric oxide (NO) in the modulation of isoproterenol-induced vasorelaxation. To elucidate roles of endothelial cells and NO in cyclic adenosine monophosphate (cAMP)-mediated vasodilators we examined the effects of removal of endothelium and a NO synthase (NOS) inhibitor on relaxant responses in vitro of rat aortic strips to β-adrenoceptor stimulants and colforsin dapropate, a water-soluble forskolin, and changes in cAMP and cyclic guanosine monophosphate (cGMP) contents. Relaxant responses of rat aorta to isoproterenol, denopamine, salbutamol, colforsin, and dibutyryl cAMP (dbcAMP) were blunted by removal of endothelial cells or treatment with NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Relaxant response of endothelium-intact segments to isoproterenol was associated with increases in tissue cAMP and cGMP contents. Removal of endothelium or treatment with L-NAME markedly reduced basal cGMP and abolished the isoproterenol-induced increase in cGMP but not cAMP content. In endothelium-removed segments, pretreatment with sodium nitroprusside (SNP) restored the diminished relaxant response to isoproterenol and increased basal cGMP (from 0.08 ± 0.01 to 0.16 ± 0.02 pmol/mg protein), whereas it did not affect the isoproterenol-induced increase in cAMP. The diminished relaxant response of endothelium-removed segments to dbcAMP was not restored by SNP pretreatment. The results suggest that relaxant response of rat aorta to cAMP-mediated vasodilators is mediated, in part, by NO production in endothelium and subsequent increase in cGMP in vascular smooth-muscle cells.

Related Topics

    loading  Loading Related Articles