Salusin-β Induces Smooth Muscle Cell Proliferation by Regulating Cyclins D1 and E Expression Through MAPKs Signaling Pathways

    loading  Checking for direct PDF access through Ovid


Despite the clear mitogenic effect of salusin-β on vascular smooth muscle cells (VSMCs), which contributes to its proatherosclerotic effects, additional studies are needed to explore its underlying mechanisms. The aim of this study was to investigate the mechanism of salusin-β's effects on VSMCs cell cycle regulation and the possible signal pathways. Salusin-β accelerated the G1/S phase transition in VSMCs and increased the expression levels of cyclins D1 and E. Silencing either cyclin D1 or cyclin E gene inhibited salusin-β-induced VSMCs proliferation, cell cycle progression, phosphorylation of the Rb protein, and dissociation of the E2F–Rb complex. Importantly, expression of cyclin E was also induced by cyclin D1. Next, we found that salusin-β increased the protein expressions of activator protein-1 (AP-1) subunits c-Jun and c-Fos, and enhanced binding of AP-1 to the promoter region of cyclin D1. In addition, inhibition of AP-1 activity could lead to significant suppression of salusin-β-induced cyclin D1 expression. Furthermore, MPAKs pathways were found to mediate salusin-β-induced VSMCs proliferation, cyclin D1, cyclin E, c-Jun, and c-Fos expression. These results suggest that salusin-β promotes cell cycle progression of VSMCs by upregulating the cyclin D1 and cyclin E, in an AP-1-dependent manner through mitogen-activated protein kinases signaling pathways.

Related Topics

    loading  Loading Related Articles