Roscovitine Protects From Arterial Injury by Regulating the Expressions of c-Jun and p27 and Inhibiting Vascular Smooth Muscle Cell Proliferation

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose:

Roscovitine (Rosc) is a selective inhibitor of cyclin-dependent kinases (CDKs) and a promising therapy for various cancers. However, limited information is available on the biological significance of Rosc in vascular smooth muscle cells (VSMCs), the cell type critical for the development of proliferative vascular diseases. In this study, we address the effects of Rosc in regulating VSMC proliferation, both in vitro and in vivo, exploring the underlying molecular mechanisms.

Methods:

The proliferations and cell-cycle distributions of in vitro cultured VSMCs, as well as several other cancer cell lines, were examined by cell-counting assay and flow cytometry, respectively. Molecular changes in various CDKs, cyclins, and other regulatory molecules were examined by reverse transcription polymerase chain reaction, Western blot, or immunocytochemistry. The in vivo effects of Rosc were examined on a carotid arterial balloon-injury model.

Results:

Rosc significantly inhibited VSMC proliferation in response to serum or angiotensin II and arrested these cells at the G0/G1 phase. These changes were associated with a specific and robust decrease in CDK4, cyclin E, c-Jun, and a dramatic increase in p27kip1 in VSMCs, which was also translated in vivo and correlated with the protection of Rosc on injury-induced neointimal hyperplasia.

Conclusions:

Acting on distinct molecular targets in VSMCs versus cancer cells, Rosc inhibits VSMC proliferation and protects from proliferative vascular diseases.

Related Topics

    loading  Loading Related Articles